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Jet Propulsion Laboratory
California Institute of Technology CGI HLC Modeling: From Design to Testbed Demo

• WFIRST-CGI Phase B PDR (in Sept):   nFOV/HLC Band 1 testbed demo*
Purpose: Meet the raw contrast requirement within required time allocation, 

both on ground and in-orbit WFC

• Modeling actively involved:
– Mask design: mask baselining 

Fabrication error tolerancing, flight performance prediction,  general feedback to design

– Testbed demo: performance validation
Ground WFC (from flat DM) 
In-orbit WFC (from ground seed DM) 
Open loop sensitivity 

– Testbed WFC diagnosis 
Ground WFC,  when from design DM solution 

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL 2

* Seo, J. et al. Proc. SPIE 11117-53, this conference Proc. (talk on Thursday)
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Jet Propulsion Laboratory
California Institute of Technology Exploratory HLC Occulter Mask Designs for Phase B3

• Promising performances; but requires new fabrication process / method
– Q: Are they viable? Are there risks? 

• Modeling to address design mask viability concern:
– Robust to fabrication, I&T, and launch uncertainties? Impact on LOWFS? Meet key L-3/4 Req’s? 

Traditional
PMGI
(closeup)

Extended PMGI

PMGI Nickel
(closeup)

PMGI

Multi-layer nickel + extended PMGI

NEW EXPLORATIONS 

SPIE Austin, TX, 2018, Hanying Zhou, JPL08/12/2019



W
FI

R
S

T 
  

  
  

  
  

  
  

  
C

or
on

ag
ra

p
h

Jet Propulsion Laboratory
California Institute of Technology

Major Fab Errors: Measurement and In Model

Mean thickness 
variation, model
pct of PMGI, nickel 
mean

* Dan Wilson (2014)

20~30% at some peak/valley locations*

Thickness scale 
variation, model
pct of pmgi, 
nickel PV

• For modeling: derive HLC occulter transmission from thin-film equation directly
• “Design” mask typically given in complex transmission (for modeling)
• Add thickness errors for both PMGI and nickel in terms of mean offsets and scale variations

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of TechnologyMain Findings From Exploratory Design Evaluation

• Extended PMGI and/or multi-nickel designs require tighter fabrication tolerancing
– 1~ 5% for PMGI mean, scale, Nickel mean and scale, exceeding existing fabrication capabilities
– More work needed in better design optimization (to reduce fab risk)

• Traditional style designs:  possible options that can meet Phase B telescope interface Req.

Band Design
NI                

(full DH)  
thruput @ 

6l/D DM strokes Z2              
3-4l/D

Z4              
3-4l/D

Z6               
3-4l/D

Nickel  
mean

Nickel   
scale 

PMGI  
mean

PMGI 
scale Note

Rms/PV 1nm 1nm 1nm 10% 10% 10% 10%

Band 1

1 4.41E-09 3.13% 37/255; 40/293 1.10E-09 9.40E-09 4.80E-09 7.70E-08 1.10E-06 7.20E-09 5.60E-09 Multi nickel

2 3.45E-09 4.09% 31/223; 33/215 5.10E-10 1.88E-08 6.50E-09 1.07E-08 1.54E-08 2.76E-08 1.17E-09 Multi nickel

3 1.94E-09 3.36% 39/267; 40/241 2.29E-10 3.92E-09 7.36E-10 6.00E-10 NA 2.35E-08 4.89E-09 Ext'd pmgi

4 2.40E-09 4.70% 29/211; 30/204 2.45E-10 1.46E-08 2.67E-09 6.11E-10 NA 2.52E-08 7.50E-10 Ext'd pmgi

5 2.03E-09 4.57% 29/211; 30/204 1.27E-10 8.69E-09 2.81E-09 3.67E-10 NA 1.02E-08 3.75E-10 Ext'd pmgi

6 1.92E-09 4.10% 30/225; 35/226 1.05E-10 5.81E-09 1.82E-09 8.16E-11 NA 7.20E-11 4.91E-12 Traditional

7 1.73E-09 4.56% 27/185; 32/204 9.55E-11 5.42E-09 1.69E-09 8.72E-11 NA 3.78E-10 1.06E-11 Traditional

8 1.90E-09 4.10% 31/274, 34/276 1.52E-10 6.53E-09 2.39E-09 6.05E-11 NA 5.90E-10 1.34E-10 Traditional

Band 3

9 5.25E-09 5.33% 33/212; 34/213 1.27E-10 8.69E-09 2.81E-09 5.48E-09 7.24E-09 4.80E-09 4.04E-09 Multi nickel

10 4.39E-09 4.85% 37/259; 39/230 6.46E-11 1.18E-08 2.26E-09 9.80E-10 2.70E-09 2.90E-09 2.00E-09 Multi nickel

11 5.41E-09 3.95% 27/185; 32/204 1.64E-10 3.45E-09 1.30E-09 5.36E-11 NA 5.73E-10 3.27E-11 Traditional

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

Traditional

Extended 
PMGI 

Multi-layer nickel 
+ extended PMGI

Multi-layer nickel 
+ extended PMGI

Traditional
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Jet Propulsion Laboratory
California Institute of Technology

• Model =  Full PROPER Contrast Truth sub-model + Compact Control sub-model 

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL 6

• Full flight CBE optic surf aber (tel +toma +CGI)
• Ground-to-orbit OTA-CGI misalignments
• Polarization effect 
• FPM fab errors (PMGI &Nickel, mean & scale)

Compressed aberration from full 
model;  “known” imperfections only

Standard Procedure For Baselining Design Mask

Standard procedure for systematic evaluation and mask baselining: 
Model,  Aber and error inputs, WFC scheme/flight constraints, evaluation metric, etc.

Many inconsistencies and errors among designs found during preliminary design evaluation:

Fresnel propagation, distr. aber FFT propagation except btwn DM1 <--> DM2

For flight-like WFCFor high fidelity
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Jet Propulsion Laboratory
California Institute of Technology

• WFC  = Ground  / seed generation In-orbit /commission phase

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL 7

Standard Procedure For Baselining Design Mask

Standard procedure for systematic evaluation and mask baselining: 
Model,  Aber and error inputs, WFC scheme/flight constraints, evaluation metric, etc.

• Evaluation Metric:  Flux Ratio Noise (L3), based on selected key L4 metrics:  

• Low order WFE flattening before EFC
• 3 subbands ctrl; weighted E field averaging for each subband E field
• DM neighbor rule and maximum voltage constraints

Throughput, contrast, coherent/incoherent ratio; 
sensitivities of Zernike modes 2~11, pupil shear, 
and DM thermal drift; also off-axis source contrast, 
core throughput, peak intensity, PSF core size

Adjust raw contrast based 
on CBE disturbances, and 
calc statistics for stability

Flux Ratio Noise 
calculator

• Start from flat DM setting
• No limit on Jacobian update or # of iters

• Start from seed DM (ground or design*) 
• Single Jacobian, max 30 iterations  

L4 metrics L3 metrics
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Jet Propulsion Laboratory
California Institute of Technology

Phase B HLC/nFOV Band 1 Baseline Design

8

Pupil + Lyot mask

DM1 (in WFE) DM2 (in WFE)

• Traditional style design
• But asymmetrical PMGI

PMGI 

L-3/4 performances:

Throughput: 3.4% 
Static init raw C: 2.7e-9
Photometry N: 1.4e-9 
C stability: 0.6e-9

FRN: 1.4e-9* 

*71% margin, slightly > SRR design

PMGI, Nickel, Titanium profiles scan 

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology Flight WFC Prediction: Ground & In-Orbit WFC

9

HLC-20190210 dsgn; nFOV Band 1, 575nm, 10%

Radial NI coh   NI incoh  contrast
3-4l/D: 2.20e-09  7.79e-10  2.80e-09  
4-8l/D: 1.16e-09  2.47e-10  1.15e-09  
8-9l/D: 2.28e-09  5.95e-11  2.42e-09  
Mean: 1.53e-09  2.48e-10  1.51e-09 

Can dig a dark hole that meets L4 Req, within required time allocation*, for both on ground and in-orbit

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

* Equivalent to max 30 iterations



W
FI

R
S

T 
  

  
  

  
  

  
  

  
C

or
on

ag
ra

p
h

Jet Propulsion Laboratory
California Institute of Technology Testbed WFC Modeling:  Band 1 HLC/nFOV - Overview

10

Model:  compact for both contrast truth & control (mostly FFT based except DM1 <--> DM2)
§ Chromatic pupil E fields, flat DM, DM gains; all TTB PR measurement
§ Occulter fabrication errors*:  PMGI mean & scale,  nickel mean; AFM measurement
§ Pupil mask and Lyot mask clockings (relative to FPM & camera view); testbed characterization
§ DM misalignment:  tilts and lateral shifts; testbed characterization (past)
q For in-orbit WFC:  all above, plus OTA-s WFE, pupil mask clocking, pupil mask shear, CGI internal 

misalignment,  and DM hysteresis  (ground DM seed strength)*

* As knowledge errors;  the rest are as known/alignment errors

WFC:
§ For Ground EFC: start from flat DM solution

§ Frequent Jacobians update & beta kick cycles (alternate hi/lo regularizations); no limitation on # of iters
§ For in-orbit EFC: start from ground seed, add flight flat, and subtract out ground flat

§ Single Jacobian,  1 or 2 beta kick cycles (or quick early multi beta cycles) ,  max 30 iters
§ 3 subbands ctrl; weighted E fields averaging for each subband E field; 7 lambdas contrast scoring
§ DM neighbor rule and max voltage constraints

Model validation for both ground & simulated in-orbit WFC, Tech testbed configuration

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

TTB
Meas. -
based 
input
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Jet Propulsion Laboratory
California Institute of Technology Model / TTB Comparison, Ground WFC, From Flat

11

Model validates TTB ground WFC performance: 
• Both meet raw contrast requirement
• Agrees well in contrast floor and 

convergence speed

TTB (modulated)             Model

(TTB: run482It #1501-1784)

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

radial       3 ~ 4       4 ~ 8        8 ~ 9       3.0~9.0   
TTB(mod):      1.2e-09   0.9e-09   2.9e-09   1.5e-09
Model:  1.9e-09   0.9e-09   3.0e-09   1.6e-09  

Final dark hole raw contrast
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Jet Propulsion Laboratory
California Institute of Technology Model/TTB Comparison, In-Orbit WFC, From Ground Seed

1208/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

(TTB: run482It#08043-8092)

*modulated part

radial       3 ~ 4       4 ~ 8        8 ~ 9         3 ~ 9
TTB(mod):      2.4e-09     2.5e-09   2.4e-09 
Model:  2.3e-09   1.6e-09   2.2e-09   1.7e-09  

Model validates TTB simulated in-orbit WFC: 
• Both meet raw contrast requirement
• W/n the required time allocation (# of iterations)
• Agrees well in contrast floor & convergence rate

TTB (modulated)             Model

Final dark hole contrast
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Jet Propulsion Laboratory
California Institute of Technology Model/TTB Agreement, Open Loop Sensitivities

13

• Generally good match (< factor of 2) except
§ ~3X diff in CGI internal misalignment*:  

*Src offset at FSM, compensated by FPM

Ø Likely reason:
‒ Compact model less accurate than full model for 

some location dependent terms  
‒ Similar model behavior observed for SPC in the past

TTB measurement    TTB model (compact )    Flight model (full) 

Full model more accurate than compact model used 

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL



W
FI

R
S

T 
  

  
  

  
  

  
  

  
C

or
on

ag
ra

p
h

Jet Propulsion Laboratory
California Institute of Technology

TTB WFC Diagnosis, Ground WFC, From Design DM

14

Historically, testbed WFC disagrees w/ model prediction when starting from design DM solution
• Reason identified: incorrect application of design DM solution on TTB

Once corrected è much shortened and less Jacobian-update-need ground WFC 

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

(TTB: run482It #2501-2891)
(model: 2 Jacobian updates)

180o rotation

Starting Epup: amp (left), phase(right)

DM expected* (left);  dsgn DM applied (right)

* Diff btwn start/ end EFC DM, when starting from flat DM
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Jet Propulsion Laboratory
California Institute of Technology Summary

• HLC occulter mask evaluation
– Identified potential risks w/ early exploratory mask designs and fabrication process

As a result, traditional style design chosen for risk aversion
Ø Developed standard evaluation procedure, for masks design evaluation / optimization*, 

flight performance prediction

• Testbed WFC performance validating
– Confirmed current Phase B design can meet raw contrast req. w/n the time allocation
– Agreed well in:

• Ground WFC:  convergence speed, raw contrast floor, etc.
• In-orbit WFC:  convergence speed, raw contrast floor, etc. 

• Open loop sensitivity: tip/tilt, pupil mask clocking/shear, CGI internal misalignment

– Identified implementation error on testbed 
• Ground WFC, when starting w/ design DM solution

Ø Closed major gaps btwn model predictions and testbed results, improved model fidelity

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL 15

* AJ, Riggs, A simplified version is now in design pipeline
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Jet Propulsion Laboratory
California Institute of Technology

BACKUPS

1608/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology Flight WFC Modeling: All Bands (1,3,4) – Overview -1

17

• Model = [full PROPER contrast truth sub model + compact control sub model]:
Contrast truth, for ground:

§ Flight CGI part optic surface aberrations (i.e., excluding front end telescope and toma optic up 
to FSM);  no polarization; but add 20nm rms WEF for ground OTA-s, as known error

§ FPM fabrication error for HLC: PMGI mean offset and scale, nickel mean, as knowledge error
Contrast truth, for In-orbit:

§ Full flight optic surface aber (telescope + toma +CGI), and polarization effect, consistent with 
flight CBE, as known error

§ FPM: same fabrication error for HLC: PMGI mean, PMGI scale, nickel mean, as knowledge error
§ OTA:  lateral misalignment, clocking, magnification, all as known error
§ CGI:  internal misalignment (misalign DM2 from DM1), as known error
§ DM: hysteresis, uniform difference in starting actuator height, as knowledge error

Compact control:
§ Include known errors as derived from full model but not knowledge errors

Number of Jacobian (and iteration) of in-orbit WFC, flight optics and configuration  

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology Flight WFC Modeling: All Bands (1,3,4) – Overview -2

18

• WFC
§ Low order WFE flattening (split between two DMs) before EFC
§ EFC: 3 subbands ctrl for nFOV & wFOV; 5 for IFS; 

o For ground WFC: start with design setting (e.g., use design DM pattern for nFOV mode)
‒ No limitation on frequency of Jacobian update or number of iterations

o For In-orbit WFC: start with ground seed; but subtract out ground WFE
‒ Single Jacobian calculation, 
‒ Max 30 iterations; max 2 cycles of beta kicks  

§ Probing (sensing) is substituted by weighted averaging of E fields for each subband E field
§ DM neighbor rule and max constraints
§ Contrast scoring:  7 lambdas for Bands 1 & 4 (nFOV & wFOV);  11 lambdas for Band 3 (spectroscopy)

Number of Jacobian (and iteration) of in-orbit WFC, flight optics and configuration  

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology

Band 1, HLC/nFOV,  Ground and In-Orbit WFC

19

HLC-20190210 dsgn; nFOV Band 1, 575nm, 10%

Radial NI coh   NI incoh  contrast
3-4l/D: 2.20e-09  7.79e-10  2.80e-09  
4-8l/D: 1.16e-09  2.47e-10  1.15e-09  
8-9l/D: 2.28e-09  5.95e-11  2.42e-09  
Mean: 1.53e-09  2.48e-10  1.51e-09 

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology

Band 3, SPC/Spectro,  Ground and In-orbit WFC

20

IFS-20190130 dsgn; Band 3, 730nm, 18%

NI coh   NI incoh  contrast
2.59e-09  1.45e-09  3.52e-09  
1.82e-09  1.05e-09  2.12e-09  
1.38e-09  5.55e-10  1.56e-09  
1.06e-09  3.08e-10  1.19e-09  
2.03e-09  3.60e-10  2.30e-09  
4.19e-09  2.10e-10  7.66e-09  
1.57e-09  5.18e-10  1.77e-09  
2.09e-09  6.56e-10  3.06e-09 

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology

Band4, SPC/wFOV, Ground and In-orbit WFC

21

NI coh   NI incoh  contrast
1.16e-09  8.42e-11  1.40e-09  
7.95e-10  9.97e-12  8.33e-10  
2.93e-09  3.71e-11  5.09e-09  
1.03e-09  1.57e-11  1.09e-09  
1.48e-09  4.38e-11  2.44e-09 

wFOV -20181220 dsgn; Band 4, 825nm, 10%

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Jet Propulsion Laboratory
California Institute of Technology Misc. Info: Occulter Mask Fab Error 

22

Based on AFM measurement
• Mean PMGI offset:  ~ 187nm
• Avg PMGI scale err: ~ 9%

• Minor impact on WFC NI / iter

Difference (mean subtracted)AFM  measurementDesign

(Mean subtracted)

w/n conservative 
estimates


